COURSE INFORMATON							
Course Title	Code	Semester	L+P Hour	Credits	ECTS		
SURFACE CHEMISTRY IN NANOSCIENCE	CHBE 568				10		

Prerequisites

-

Language of Instruction	English
Course Level	Master's Degree
Course Type	Elective
Course Coordinator	
Instructors	Assist. Prof. Cem Levent Altan
Assistants	
Goals The aim of this course is to give the fundementals of coll surface chemistry and give the students the ability to ap knowledge to nanotechnology. The course is supplement experiments to solidify the theoretical knowledge.	
Content	Molecular interactions, self-assembly, Brownian motion, sedimentation; Surface Chemistry. Surface tension, capillary action, contact angle, methods of surface tension measurement; Surfactants, micelles, packing parameter, CMC, etc.; Electrostatistics; Colloidal Stability; Phase Diagrams. Vesicles, microemulsions, emulsions, etc.; Polymers in Solution; Nanoparticles and methods of synthesis; Techniques used in Size Determination; Techniques used for Crystal Structure (XRD) and evaluation of data.

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Adequate knowledge in science and technology in colloid and surface chemistry; ability to use theoretical and applied information in these areas to solve relevant problems.	1	1,2	A
2) Ability to devise, select, and use modern techniques such as conductivity meter,	2	1,2,3	A,B,C

spectrophotmeter, tensiometer, zeta- potential, viscosity meter, etc needed for engineering practice; ability to employ Excel to plot data and make calculations and Word to write reports effectively.			
3) Ability to conduct experiments, gather data for investigating problems on colloid and surface chemistry such as sedimetation, adsorption, self-assembly and analyze and interpret results from these experiments and also data from other techniques such XRD, microscopy and light scattering.	5	1,3	В
4) Ability to communicate effectively both orally and in writing by following the text book, lab manual and teaching and writing reports and exams in English.	8	1,2,3	A,B,C
5) Recognition of the need for lifelong learning; ability to access information, to follow developments in science and nanotechnology, and to continue to educate him/herself on these topics.	3	1,2	A,B,C
6) Knowledge about nanotechnology and the global and societal effects of nanotechnology on health, environment, and safety.	10	1,2	A,B

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Laboratory
Assessment Methods:	A: Testing, B: Experiment, C: Homework or Project

	COURSE CONTENT		
Week	Topics	Study Materials	
1	INTRODUCTIONS, COLLOID AND SURFACE CHEMISTRY	Textbook	
2	MOLECULAR INTERACTIONS, SELF-ASSEMBLY, BROWNIAN MOTION, SEDIMENTATION EXPERIMENT: SEDIMENTATION	Textbook	
3	SURFACE CHEMISTRY. SURFACE TENSION METHODS OF SURFACE TENSION MEASUREMENT	Textbook	
4	SURFACTANTS, MICELLES, CMC, ETC EXPERIMENT: FACTORS AFFECTING SURFACE TENSION	Textbook	
5	ELECTROSTATISTICS EXPERIMENT: ADSORPTION OF POLYELECTROLYTES	Textbook	

	COLLOIDAL STABILITY	
6	EXPERIMENT: FLOCCULATION AND COAGUATION	Textbook
7	MIDTERM EXAM I	Textbook
8	VESICLES, MICROEMULSIONS, EMULSIONS, ETC	Textbook
	NANOPARTICLES AND METHODS OF SYNTHESIS	
9	EXPERIMENT: MAGNETITE SYNTHESIS	Textbook
	TECHNIQUES USED IN SIZE DETERMINATION	
10	DLS AND DISCUSSION OF TEM RESULTS	Textbook
	TECHNIQUES USED FOR CRYSTAL STRUCTURE (XRD) AND	
11	EVALUATION OF DATA	Textbook
12	PROJECT PRESENTATIONS BY STUDENTS	Textbook
13	PROJECT PRESENTATIONS BY STUDENTS	Textbook
14	PROJECT PRESENTATIONS BY STUDENTS	Textbook

RECOMMENDED SOURCES			
Textbook	Bucak, S. And Rende, D., Colloid and Surface Chemistry: A Laboratory Guide for Exploration of the Nano World, 1st ED., CRC Press, 2019		
Additional Resources			

	MATERIAL SHARING
Documents	
Assignments	
Exams	

ASSESSMENT			
IN-TERM STUDIES NUMBER PERCENTAGE			
Midterm	1	30	
Lab Report	5	35	
Proje	1	35	

Total	100
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE	30
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE	70
Total	100

COURSE CATEGORY

Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM						
No	No Program Learning Outcomes		Contribution				
		1	2	3	4	5	
1	Acquire expanded and in-depth information via performing scientific research in the field of Chemical Engineering, evaluate, interpret and implement knowledge.			+			
2	Be knowledgable in the contemporary techniques and methods applied in Chemical Engineering and their respective constraints.					+	
3	Be cognizant of the novel and developing applications of his/her profession, study and learn them as required.					+	
4	Formulate Chemical Engineering problems, develop methods to solve them and implement innovative techniques in solutions						
5	Design and conduct analytical modeling and experimental research, analyze and interpret complex problems encountered in this process.			+			
6	Develop novel and/or original ideas and methods; conceive innovative solutions in systems, component and process design						
7	Complete information via processing limited or incomplete data by the use of scientific methods and implement it; integrate knowledge from different disciplines						
8	Communicate in at least one foreign language at the level of European Language Portfolio B2 orally and in writing.					+	
9	Communicate stages and results of his/her studies in a systematic and clear manner orally or in writing in intra or interdisciplinary national and international settings.						
10	Defines societal and environmental aspects of Chemical Engineering applications		+				
11	Observe social, scientific and ethical values during collection, interpretation, and dissemination of data and in all professional activities.						
12	Lead multidisciplinary teams, develop solution methodologies for complex problems and take responsibility						

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration	13	3	39
Hours for off-the-classroom study (Pre-study, project)	14	10	140
Mid-terms	1	3	3
Laboratory Reports	5	12	60
Final examination	1	3	3
Total Work Load			245
Total Work Load / 25 (h)			9.8
ECTS Credit of the Course			10